261 research outputs found

    Surgical Navigation System for Transsphenoidal Pituitary Surgery Applying U-Net-Based Automatic Segmentation and Bendable Devices

    Get PDF
    Conventional navigation systems used in transsphenoidal pituitary surgery have limitations that may lead to organ damage, including long image registration time, absence of alarms when approaching vital organs and lack of 3-D model information. To resolve the problems of conventional navigation systems, this study proposes a U-Net-based, automatic segmentation algorithm for optical nerves and internal carotid arteries, by training patient computed tomography angiography images. The authors have also developed a bendable endoscope and surgical tool to eliminate blind regions that occur when using straight, rigid, conventional endoscopes and surgical tools during transsphenoidal pituitary surgery. In this study, the effectiveness of a U-Net-based navigation system integrated with bendable surgical tools and a bendable endoscope has been demonstrated through phantom-based experiments. In order to measure the U-net performance, the Jaccard similarity, recall and precision were calculated. In addition, the fiducial and target registration errors of the navigation system and the accuracy of the alarm warning functions were measured in the phantom-based environment. © 2019 by the authors.1

    Stemness Evaluation of Mesenchymal Stem Cells from Placentas According to Developmental Stage: Comparison to Those from Adult Bone Marrow

    Get PDF
    This study was done to evaluate the stemness of human mesenchymal stem cells (hMSCs) derived from placenta according to the development stage and to compare the results to those from adult bone marrow (BM). Based on the source of hMSCs, three groups were defined: group I included term placentas, group II included first-trimester placentas, and group III included adult BM samples. The stemness was evaluated by the proliferation capacity, immunophenotypic expression, mesoderm differentiation, expression of pluripotency markers including telomerase activity. The cumulative population doubling, indicating the proliferation capacity, was significantly higher in group II (P<0.001, 31.7±5.8 vs. 15.7±6.2 with group I, 9.2±4.9 with group III). The pattern of immunophenotypic expression and mesoderm differentiation into adipocytes and osteocytes were similar in all three groups. The expression of pluripotency markers including ALP, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and telomerase were strongly positive in group II, but very faint positive in the other groups. In conclusions, hMSCs from placentas have different characteristics according to their developmental stage and express mesenchymal stemness potentials similar to those from adult human BMs

    In Vivo and In Vitro Hepatoprotective Effects of Geranium koreanum

    Get PDF
    Geranium koreanum (GK) is an indigenous Chinese herbal medicine widely used for the treatment of various inflammation and liver disorders. However, the exact mechanism of action of GK remains unknown. This study aimed to investigate the protective effect and related molecular mechanism of GK on NaAsO2-induced cytotoxicity in HepG2 cells and liver damage in mice. The cytoprotective role of GK was assessed on HepG2 cells using MTT assay. Oxidative stress and lactate dehydrogenase levels were measured with ROS and LDH assay. Histopathology and serum enzymes levels were estimated. The molecular mechanism was evaluated by qPCR and immunoblotting to ensure the hepatoprotective role of GK against NaAsO2 intoxication in mice. We found cotreatment with GK significantly attenuated NaAsO2-induced cell viability loss, intracellular ROS, and LDH release. Hepatic histopathology and serum biochemical parameters, ALT, and AST were notably improved by cotreatment with GK. Beside, GK markedly altered both mRNA and protein expression level of MAPK. The proapoptotic and antiapoptotic protein Bax/Bcl-2 ratio was significantly regulated by GK. Moreover, GK remarkably suppressed the postapoptotic transcription protein cleaved caspase-3 expression. The present study reveals that GK possesses hepatoprotective activity which is probably involved in the modulation of the MAPK/caspase-3 pathway

    The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    Get PDF
    Dangkwisoo-San (DS) is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO) production in human brain microvascular endothelial cells (HBMECs). DS (10–300 μg/mL) produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS) inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF), although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS) inhibitor, N5-(1-iminoethyl)-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation

    Introduction of Transmembrane Inner Ear (tmie) Gene Can Recover the Hearing Impairment and Abnormal Behavior in the Circling Mouse

    Get PDF
    The spontaneous mutant circling mouse (cir/cir) shows a circling behavior and hearing loss. We produced transgenic mice overexpressing the causative gene, transmembrane inner ear (tmie), for the phenotypic rescue of the circling mouse. Through the continuous breeding with circling mice, the cir/cir homozygous mice carrying the transgene (cir/cir-tg) were produced. The rescued cir/cir -tg mice were able to swim in the water with proper orientation and did not show any circling behavior like wild type mice. Western blot and immunohistochemical analysis exhibited that the transgenic tmie was expressed in the inner ear. Inner and outer hair cells were recovered in the cochlea and spiral ganglion neurons were also recovered in the rescued mice. Auditory brainstem response (ABR) test demonstrated that the cir/cir -tg mice are able to respond to sound. This study demonstrates that tmie transgene can recover the hearing impairment and abnormal behavior in the circling mouse
    corecore